Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sports Sci Med ; 22(4): 726-738, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045755

RESUMEN

Being able to tread water effectively can improve the likelihood of survival following accidental immersion. People tread water in various ways, ranging from rudimentary 'doggy-paddle' to more elaborate techniques like the eggbeater, but little is known about the energetic and cognitive requirements of treading water. We therefore aimed to measure the demands of treading water techniques for people of different experience levels. Three cohorts, comprising 21 adult water treading experts (water polo players), 15 intermediate swimmers and 16 inexperienced swimmers, treaded water for 3 min each using four different techniques while cognitive and energetic economy measures were taken. For inexperienced swimmers, the flutter kick and breaststroke patterns produced the lowest self-reported physical and task load (rating of perceived exertion, NASA task load index), while cognitive (probe reaction time), cardiac (heart rate) and metabolic (oxygen consumption) load did not differ between techniques. In contrast, for expert water treaders, both breaststroke and eggbeater patterns produced lower cognitive, cardiac and metabolic loads. For intermediate swimmers, breaststroke resulted in the lowest cardiac and metabolic loads, as well as self-reported task load. Probe reaction time was highest while performing the eggbeater technique, indicating that this technique was challenging to coordinate and cognitively demanding. While the energetic demands of antiphase kicking patterns (such as eggbeater in experts or flutter kick in beginners) may be similarly low, the symmetric coordination of upright breaststroke may explain why this pattern's cognitive economy was favourable for all groups. As the eggbeater can be challenging to perform for many people, an upright breaststroke technique is an adequate alternative to adopt in survival situations.


Asunto(s)
Natación , Deportes Acuáticos , Adulto , Humanos , Natación/fisiología , Consumo de Oxígeno , Cognición
2.
Front Psychol ; 13: 982480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248477

RESUMEN

Drowning has been the cause of over 2.5 million preventable deaths in the past decade. Despite the fact that the majority of drownings occur in open water, assessment of water safety competency typically occurs in swimming pools. The assessment of water safety competency in open water environments brings with it a few difficulties, but also promises tremendous benefits. The aim of this position paper is to discuss the benefits and caveats of conducting assessments in open water environments as opposed to closed and controlled environments, and to provide recommendations for evidence-based practice. The first theoretical section discusses the effects of the environment and key variables (such as temperature and water movement) on various factors of assessment. These discussions are linked to the two perspectives of representative learning design (based on ecological dynamics) and information processing theory. The second section presents two pilot studies of relevance and provides practical implications for assessment of water safety competency. It seems that a combination of pool-based practice and open water education may be ideal in assessing aquatic skills competency. Assessment in open water presents clear benefits regarding validity, but often poses seemingly unsurmountable barriers, which providers may have reservations about in the absence of clear evidence. Hence this article provides a robust discussion about competency assessment and signals the practical importance of faithfully reproducing the environment in which skilled behavior is most relevant.

3.
Front Psychol ; 12: 733489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690889

RESUMEN

Learning aquatic skills is an important component of developing physical literacy in children. Aquatic skills such as floating, swimming and safe entry/exit promote engagement in different water environments and may help preserve lives in an emergency. This scoping review was conducted to evaluate the influence of task constraints (i.e., equipment) and environmental constraints (i.e., physical and social) on how children learn foundational aquatic skills. In developed countries, children are typically taught in swimming pools under direct supervision. It is also not uncommon to see children and infants learning to swim with assistive equipment (e.g., buoyancy aids). However, perhaps surprisingly, the evidence on how and where children learn aquatic skills does not uniformly promote such practices. For example, the use of flotation devices has not been proven to aid skill learning. Some researchers have advocated that children should learn aquatic skills whilst wearing outdoor clothing. One benefit of children wearing clothing is an increased capacity to practice in colder water (such as the ocean, rivers, or lakes). Overall, whilst practitioners often use equipment for various reasons it seems that not all equipment is equally useful in promoting the acquisition of aquatic skills. In less developed countries, with limited access to swimming pools and fewer resources for private instruction, a range of different open water aquatic environments and practices, such as swimming in temporarily flooded areas, have been reported. Such strategies are in urgent demand of further research given that drowning rates in less developed countries around the world exceed those in developed nations. It can be argued that learning in pools does not afford the opportunities to develop the whole range of adaptive skills that may be required in different open water environments such as navigating currents and waves, floating whilst clothed, or making life-saving decisions. Consequently, a shift toward teaching in open water environments has occurred in several countries. This review provides an evidence-base upon which practitioners can design more effective aquatic education programs for children.

4.
Front Physiol ; 12: 719788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489736

RESUMEN

In an immersion incident, a person may be required to tread water for extended periods of time in order to survive. Treading water, or maintaining a stable head position above the water surface, can be achieved in several different ways. Determining which treading water techniques are economic (energetically and cognitively) is an important first step in approaching evidence-based water safety instruction. The present study investigated the cognitive and metabolic demands associated with four main techniques for treading water in experienced water treaders. Skilled water treaders (n=21) performed four common treading techniques for 3min each: "running" in the water, "flutter kick" with hands sculling, "upright breaststroke," and "egg-beater." Self-reported rate of perceived exertion (RPE) and task load index (TLX) score, as well as objective measures of probe reaction time (PRT; i.e., response to auditory cues while treading), oxygen consumption and heart rate were assessed. The "egg-beater" technique and the "upright breaststroke" technique were linked to significantly lower cognitive and energetic demands compared to the other techniques (VO2: p<0.001 - "Running" M=29.02, SD=7.40/"Flutter kick" M=29.37, SD=8.56, "Breaststroke" M=23.47, SD=7.28, and "Eggbeater" M=23.18, SD=6.31). This study lays the groundwork for future research that may establish the ideal movement behavior in drowning situations and investigate movement instruction to less experienced treaders.

5.
Prog Brain Res ; 234: 245-261, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29031466

RESUMEN

This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Memoria a Corto Plazo/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Mapeo Encefálico , Electroencefalografía , Femenino , Hockey , Humanos , Masculino , Análisis de Regresión , Encuestas y Cuestionarios , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...